Sunday, August 26, 2018

Electrification of the Heating Sector: CLG meeting in September

Consumer Liaison Group Meeting in September

The purpose of the Consumer Liaison Group (CLG) is to be the voice of the electricity consumer in advising the grid operator, ISO-NE. (I am on the Coordinating Committee for the CLG.)

The next meeting of the Consumer Liaison Group will be Thursday, September 20,  in Windsor Locks, Connecticut. The topic is Electrification of the Heating Sector.  

CLG meetings are free, but you should register in advance if you want lunch.  Here's the information.  The graphic is merely a screen shot,  I supply the relevant links below the graphic.  I hope to see some of you there.

DoubleTree Hilton Hotel, Windsor Locks, CT
CLG Webpage

Tuesday, August 14, 2018

New England Governor's Meeting: Guest post by Guy Page

Toronto, Evening of August 14, 2003, Wikipedia
On eve of 15th anniversary of Big Blackout, governors push more reliable power grid

By Guy Page
AUGUST 13, 2018 - Maybe the timing was just co-incidence. But today, on the eve of the 15th anniversary of the August 14, 2003 Big Blackout that put 50 million North Americans in the dark, Gov. Phil Scott and four other New England governors announced plans to prevent crippling power blackouts.

The 2003 outage blacked out an estimated 50 million people and 61,800 megawatts (MW) of electric load in eight northeastern states, including parts of southern Vermont, and Ontario.

Maybe the governors remember the Big Blackout, but it’s more likely they are heeding this winter’s scary wake-up call. For three weeks of record cold in December and January, New England homeowners burned record amounts of natural gas to stay warm. Power grid operators lacked adequate supply to power regional natural-gas fired plants. The New England grid was already playing with a thin bench, due to recent closures of coal and nuclear power plants. Things got worse when a transmission line failure separated an operational nuclear power plant from its customers. In extremis, grid operators burned backup stockpiles of dirty, expensive coal and oil. Soon even these supplies began to run low. Had sub-zero temperatures persisted, the grim reality of blackouts, frozen pipes and frostbitten New Englanders was imminent.  

In the aftermath, grid operator ISO-New England warned that preventing blackouts will require action. Yesterday, the governors agreed:
“The New England states and ISO New England have recognized the challenge of increasing reliance on natural gas-fired generation during cold periods when the region’s natural gas is used primarily for heating. These concerns have been heightened as non-natural gas-fired generation resources, such as nuclear, coal, and oil, have retired in recent years. During recent winters, ISO-NE has been relying on more expensive, carbon-intensive oil-fired units to ensure sufficient generation to meet hour-by-hour demands on our energy system.” 
The governors in particular praised the low-carbon, energy security value of nuclear power:
“Effective next June, the region will have two nuclear power plants that represent approximately 3,500 MW of baseload energy that is not dependent on natural gas infrastructure and also helps to meet emission goals. ….It is important to continue to evaluate cost-effective policies that properly value existing clean energy resources which have significant fuel security implications.”

Proposed energy policies, to be adopted state-by-state, could include:

  • Public “cold weather” education to conserve non-essential electricity and heating fuel, similar to messaging during summer heat waves;
  • Charging customers more at peak hours of consumption, hopefully to reduce demand;
  •  Energy efficiency, including weatherization and combined heat and power, which reduces overall consumption of electricity and natural gas; and
  • New, generation such as large-scale hydropower and off-shore wind;
  • Working with Congress to ensure Liquid Natural Gas can be delivered in a timely manner during winter;
  • More backup generation, fuel storage and transmission. 

For those of us who may have forgotten the 8/14/2003 Big Blackout, or vaguely remember seeing news coverage on our (electric) television sets – power was not restored for 4 days in some parts of the United States, according to the official EPA final report April, 2004. According to August 13 2013, ISO Newswire, New England was largely spared from the effects of the outage because protective equipment installed on the transmission system sensed the disturbance and automatically closed the ‘electricity border’ with New York, splitting New England away from the collapsing power system to the west.

But that’s history. New England’s governors have taken the important first step of acknowledging a serious, life-threatening problem exists. Whether they can prevent another Big Blackout is a question for historians of the future.

 Guy Page, a frequent guest blogger at this site, published this in his newsletter: State House Headliners. 

Copyright © 2018 Guy Page, All rights reserved.

Reprinted by permission

Thursday, July 12, 2018

Updated. Batteries at Green Mountain Power: Beating the Peak

Batteries from Wikipedia
(Tesla battery images are proprietary)
Beating the Peak

I wrote recently about The Game of Peaks. This game is a business move, not a moral imperative.

Utilities pay a percentage of overall grid costs based on the percentage of power they use during the high-usage peak hour on the grid. Lowering their usage at that time can save significant amounts of money for the utility.

Note that "beating the peak" saves money for one utility, but the fixed costs of the grid remain the same.  If one utility beats the peak, another utility will pay more for the fixed costs of the grid. Beating the Peak has little to do with conservation, a clean grid, etc.  We are talking about cost shifting from one business to another.  It irritates me when utilities wrap themselves in "do-good" rhetoric about this cost shift plan.

I plan a series of posts about Vermont utilities and their various strategies for Beating the Peak.  I start today with the biggest utility (Green Mountain Power) which has the most high-tech strategy (batteries).

Green Mountain Power: We Have the Batteries

In an article in 2016, Green Mountain Power claims to have used batteries to reduce its peak power demand and save its customers $200,000 in an hour. We know that Green Mountain Power plans to use batteries to shave the peak this year, also, as described in their recent press release: During Hot Weather GMP Leveraging Stored Energy to Drive Down Peak Power Demand and Lower Costs for Customers  In the press release, GMP describes the use of solar power and batteries in terms of 5,000 homes powered by battery during the peak, and that GMP's power sources are 90% carbon free.

Complicated and slow

The battery story is a bit more complicated, actually. The press release above claims that Vermonters have installed nearly 500 Powerwall batteries in their homes...GMP can share access to stored energy to pull down power demand at key times... and drive down costs for all customers.

Actually, Green Mountain Power is not deploying its Tesla battery units as fast as it had hoped to do so.  Electrek reported in April that only 200 home Powerwalls had been installed out of 2000 that GMP planned to install. However, the article said that the utility was making some "big deals" (with commercial customers?) that would lead to more deployment.

If there were 200 batteries in April and 500 now, the pace of installation must have increased.  Here's how Electrek describes the arrangement GMP makes with its customers for Powerwalls: Under their agreement with the electric utility, homeowners who receive a Powerwall are able to use it for backup power for “$15 a month or a $1,500 one-time fee”, which is significantly less expensive the ~$7,000 cost of the device with installation, but in return, Green Mountain Power is able to access the energy in the pack to support its grid, like a virtual power plant.

UPDATE: Green Mountain Power has just claimed to have saved $500k during the recent heatwave, deploying "enough batteries for 5000 homes."  I translate this into 500 batteries.  In this case, my estimate of $1000 saved per battery (see below) would be correct. Vermont Business Magazine: Stored energy helped GMP cave $500 K during heatwave. 

Math on the Batteries

Let's do some math.  If batteries "beat the peak" for Green Mountain Power, they could be cost effective.  Let's say GMP installs 1000 batteries, and each battery costs them $7,000 (true cost) minus $1,500 (cost the homeowner pays.)  So each battery costs Green Mountain Power $5,500.  With 1000 batteries, they will have invested $5.5 million dollars in batteries.

If GMP saves only $200,000 a year by beating-the-peak, it would take GMP about 27 years to make up the $5.5 million cost for the batteries.  Hopefully, they will actually save more, or perhaps they got a better deal on the batteries.

I'll look the calculation a different way, however.  In 2016, Green Mountain Power saved $200,000 a year with less than 200 batteries deployed. If GMP saves $1000 a year per battery, it will only take them 5.5 years to make up the costs of the batteries, which is a more reasonable payback time.

However, if  GMP deploys all 2000 batteries that they plan to use, will they be able to save $1000 per battery?  Will they be able to save $2 million in a year?

To answer this question, I would have to look at what they would pay for transmission without using the batteries. First, we need to know the overall grid costs for transmission.  That part is easy: ISO-NE expects to spend $700 million dollars on transmission this year.

Then comes the hard part: estimating Green Mountain Power's peak use compared to grid peak use.  I fear this would be a lot of speculation on my part. I don't know how much GMP would pay without the batteries. And by what percentage would the batteries cut demand?  Perhaps GMP could save $2 million a year on transmission costs, by using the batteries.  Perhaps they couldn't.  I will just leave the question out there.

Note: It is not clear how quickly the homeowner will make back their share ($1500) of the costs of the batteries.

My opinion of the GMP Strategy: Not very cost-effective. Not straightforward.

Cost: Batteries are an innovative way to shave a peak, but they don't look particularly cost-effective. They are okay, but even a six year payback is long, in terms of business calculations. And a six year payback was my most optimistic calculation.

Rhetoric: In my opinion, GMP's rhetoric about the batteries and the peak is misleading. Their press release is full of feel-good words about the environment, and nothing about how the money is saved --the "savings" is really a transfer of grid costs to other utilities.

Thursday, July 5, 2018

The Game of Peaks

Weapons used as props in the Game of Thrones
By Benjamin Skinstad [CC BY 3.0 ]
The Game of Peaks

Cutting back on electricity use on the hottest day of  the summer is not a moral imperative. It is merely part of The Game of Peaks. This game allows large utilities to shift costs to smaller utilities and co-operatives.

Luckily Game of Peaks is all about accountants, not swords.  The Game of Peaks is nowhere near as brutal as the Game of Thrones. Nobody gets killed in the Game of Peaks, but lots of people get misled about the situation on the grid.  And lots of people end up paying more than their fair share of grid costs.  There are losers in the Game of Peaks.  You may be one of them.

Rules for the Game of Peaks

ISO-NE must charge utilities their "fair share" of system costs, particularly transmission costs. But what is their fair share?  ISO determines a utility's share of the grid-wide transmission costs by determining the power used by that utility during the peak-usage hour on the grid.  The percentage of power used during the peak is the percentage of transmission costs that the utility has to pay.

Of course, this percentage calculation is an opportunity for utilities to shift costs elsewhere. Utilities campaign about "shaving the peak." Announcements state that "we saved hundreds of thousands of dollars by shaving the peak."  For example, in this Burlington Free Press article from 2016, Green Mountain Power claims to have used batteries to reduce its peak power demand, saving customers $200,000 in an hour.

Conservation Now?

The statement about saving $200,000 in an hour is a bit misleading.  It looks like it is about energy conservation, sparing the grid, etc.  It isn't.

That $200,000 wasn't some excess cost of electricity in that single  hour.  The savings comes from the fact that Green Mountain Power used its predictive power and its batteries to reduce its demand at the time of peak demand.  Therefore, it will  reduce the amount it pays for grid-level transmission. Somebody is still paying that $200K for transmission: the overall cost of grid transmission hasn't changed. Some other utility is paying that cost.

According to an article yesterday in Electrek, Green Mountain Power has now has 5,000 kWh of battery storage at this time.  This 5 MWh of storage will not make much difference to expense of transmission on the grid. However, Green Mountain Power hopes it will make a major difference to their own bottom line, as it did in 2016.

Saving Electricity in Summer: The Game as Played

As I wrote in an earlier post, The Not-Stressed Grid in Summer, "beating the peak" is not about
  • saving money while the grid power is expensive, (it is not that expensive in summer) or
  • diminishing pollution (coal and oil are not in use much during the summer), or
  • keeping the grid from failing (there's plenty of reserve capacity). 

 The local grid is doing well in very hot weather.

I am writing this post because utilities only seem to talk about the grid when they are pushing "beat the peak." If the peak is beaten, the peak-beating utilities save money, and the other utilities have to pay more.  It's a zero-sum game, not a moral imperative.

Unfortunately,  people know very little about the grid, except that you "shouldn't" (whatever that means) use as much electricity on a hot day in summer.  If I write about the grid, I need to debunk that fallacy.  I feel that if I am going to write about the problems the local grid faces in winter, I also needed to write about the problems of summer. Or rather, about the non-problems of summer, and the misleading rhetoric of some utilities.

Yes.  Saving electricity is always good

Don't get me wrong. Being thrifty and not using excess power is always a very good thing.  Still,  it helps the environment more if you are thrifty with electric usage in winter (with all that oil and coal-burning) than in midsummer.  It helps your local utility's bottom line more if you are thrifty with electric use in summer.

My voice is rather muted,  compared to utility advertising campaigns, but I felt that I must speak up.

The Not-Stressed Grid in Summer

The grid is not stressed

The Northeast is using a lot of power, but the grid is not particularly stressed.  "Using a lot of power" and "stressed grid" are not the same thing.  Many local utilities are urging conservation...but this is not because the grid is stressed.  More about conservation in the next post.

How can I say the grid is not stressed? We're having a major heat wave! For days, Vermont temperatures have been in the high nineties. A number of communities opened "Cooling Stations" in public building such as fire departments. People were encouraged to go to air-conditioned malls, drink water, check in on elderly people who may need assistance, etc.

Okay, it's hot.  But I will start by comparing the grid situation on this heat wave with the grid  situation in the cold snap in December-January.

Hot weather electricity use and prices

Let's look at the ISO-NE electricity usage  chart for July 3.  The peak is near 25,000 MW. The LMP (local marginal price) prices for electricity were between about $25 and $80 per MWh, or about 3 cents to 8 cents per kWh.

Cold weather electricity use and prices

In contrast, during the cold snap at the beginning of this year, electricity use never got much higher than 22,000 MW, as shown in this graph from the ISO report on cold weather operations.

However, in  the cold snap, the LMP prices spent a lot of time between $150 and $300 per MWh (15 cents to 30 cents per kWh). The circled area on the graph below, from the same ISO report.

In short, during the cold snap we used less electricity and paid higher prices than we do now.

Conservation and fuel usage

Using more electricity in New England means making more carbon dioxide and burning more fossil fuels.  So conservation is always good. But is conservation in summer particularly wonderful? Not really.

Right now, we have a fairly clean grid. The fuel mix is mostly natural gas, nuclear,  hydro and renewables.  The grid was running 60% gas, 20% nuclear 16% hydro and renewables.  Pretty good, in terms of emissions!  Here's a recent fuel mix graph.

A fuel mix chart for the grid on July 4

In contrast, in the winter, when natural gas was not available, oil and coal were in heavy use (Oil Kept the Power Grid Running op-ed). During the cold snap, the mix was 30% oil, not "less than 1%" oil, as it is now.  Coal use was higher, also, up around 5%. 

Surplus Capacity

So far, there's no particular reason to conserve right now instead of conserving some other time.  But let's look at something else.  Perhaps, even with natural gas available, the grid is close to maximum capacity in hot weather? Perhaps, if we don't conserve, the grid will fail?

Nope. The grid is doing well.  If you look at the ISO-NE website,  it lists "surplus capacity" right on the front page.  At this moment, as I am writing this, on a very hot day, surplus capacity on the grid is 1,180 MW.  That is the capacity available above the maximum predicted peak power use for today (23, 000MW) and above the grid's operating reserve requirement for today (2,492 MW). You can always check these types of figures in the ISO-NE morning report

Or, you can simply remember that when ISO-NE predicted the possibility of rolling blackouts in the future, ISO was concerned with winter stress on the grid leading to blackouts. They were not concerned with high summer electricity usage. 

 In short, conserving electricity this summer doesn't save more money or more carbon dioxide then it would save at many other times. As a matter of fact, it saves less of both than it would save in a winter cold snap.  Conserving now also doesn't "save the grid" from blackouts.  The grid is operating at high capacity, but nowhere near its capacity limits.

 So why are the utilities pushing conservation right now?

Game of Peaks

The utilities are urging conservation right now because they are playing the Game of Peaks.  It's  a utility game about money. If they play the Game of Peaks well, they can shift some costs from themselves over to neighboring utilities.  Yeah, it's a zero-sum game.  ("I win" can only happen if "you lose.")

 Learn the rules for the Game of Peaks in the next post.

Wednesday, June 20, 2018

Micro and Macro: What is the Energy Future?

Solar panel on a house roof near Boston
Wikipedia, Gray Watson 
Everybody knows?

Milt Caplan wrote an excellent blog post on the future of energy.   He describes attending an event where

a number of speakers prefaced their comments with statements like “everybody knows the future will be based on distributed generation – primarily with small scale renewables and storage to provide reliability”.  
(Bold in the original)

Is this indeed what everybody knows?  Is there no dissent?

Maybe Microgrids?

As Caplan wrote:
 We have this romantic fantasy that we can live off-grid with a combination of solar power and battery backup.  Of course, with a bit of thought .....we accept that we cannot go it completely alone.  The conclusion being that maybe we need to collaborate with our neighbours and build a small system (or microgrid) to achieve the reliability that we need to power our lives.
As it turns out, I have also been thinking about microgrids. A few days ago,  I heard an excellent talk on smart microgrids by Andy Haun, Chief Technology Officer, Schneider Electric Microgrids Business. These advanced microgrids can be controlled "in parallel" with the grid.  When used in this manner, the smart microgrid systems can avoid costs by shaving peak demand and by using cheaper, off-peak power. The microgrids can be also controlled in an "intentional islanded mode," which is especially useful for storm readiness.

It seemed to me that while these microgrids could be used stand-alone in remote locations, they were mostly going to be used in conjunction with the larger grid.  Or why develop all these "peak shaving" features, and so forth?

It doesn't look to me as if advanced microgrids are going to make the bigger grid obsolete, or at least, not anytime soon.

Maybe Macrogrids? 

Maybe instead of microgrids, we should be looking at really big macro grids?

Many of the renewables advocates who hope for a proliferation of microgrids also hope for long-distance DC lines, to bring bulk power from sunny or windy places to places where more people are living.  Maybe, the answer is long-DC lines to bring energy across the continent, moving energy from sunny and windy areas to big cities.  In other words, really big grids.

Earlier this year, Power Engineering featured an article, Enabling Large Scale Renewables in the Western U.S. This article proposed new, lengthy High Voltage DC lines. These lines had names such as Power from the Prairie, and Centennial West.  The lines seemed primarily designed to move wind energy from the west to the east.  Similarly, in early June, an Wall Street Journal ran an opinion piece titled  Upgrade America's 19th Century Electric Grid.   This article called for a $500 billion dollar infrastructure project to build DC power lines to "transfer energy between power-abundant and power-hungry regions. "

Could this work? Probably not.

Donn Dears wrote a blog post DC Transmission for Cutting CO2 Emissions.  As Dears explains,  HVDC transmission lines are best for moving great quantities of power for long distances; current examples carry hydro power from dams to cities. There are HVDC transmission lines carrying hydro power in the American West (Pacific DC Intertie), and similar lines in China and Brazil.  These lines are fully utilized almost all the time,  because they come from huge hydro systems with more than one power plant.

Such utilization would not be the case for the new DC lines proposed for the US.  They would carry wind and perhaps solar energy, which are not steadily available.  Low utilization rates would lead to higher costs, and DC lines are only cost-effective in limited circumstances to start with. An HVDC build-out would not work.  It would not be cost-effective.

Pursuit of the the Unsuitable

Somehow, in pursuit of renewable energy, microgrids (connected to the main grid) or a huge buildout of continent-spanning DC power lines (connected to the main grid) are considered to be options.  The main grid doesn't go away, but these new features get added.

Now, there are uses for both microgrids and DC lines. Even their proponents, however, are not proposing microgrids and DC lines as a complete substitute for the current grid. At best, they would solve some problems on the grid.  At worst, they would be high-cost, duplicative add-ons to the grid that exists now.

In short, if we want to decarbonize our grid without romantic fantasy and without too much costly duplication,  we need the following:
  • Keep our current fleet of nuclear plants running
  • Build more nuclear plants
  • Build more grid infrastructure, as appropriate.  
  • Don't duplicate infrastructure because "microgrid" or "HVDC" sounds cool.  Add them as needed. 
In other words, for a reasonable future, we must pursue suitable technologies. Technologies such as nuclear energy.

Thursday, May 17, 2018

Rolling Blackouts for New England? Angwin Op-Ed

Mystic Power Station

Rolling blackouts

Rolling blackouts are probably coming to New England sooner than expected.

When there’s not enough supply of electricity to meet demand, an electric grid operator cuts power to one section of the grid to keep the rest of the grid from failing.  After a while, the operator restores the power to the blacked-out area and moves the blackout on to another section. The New England grid operator (ISO-NE) recently completed a major study of various scenarios for the near-term future (2024-2025) of the grid, including the possibilities of rolling blackouts.

In New England, blackouts are expected to occur during the coldest weather, because that is when the grid is most stressed. Rolling blackouts add painful uncertainty – and danger – to everyday life.  You aren’t likely to know when a blackout will happen, because most grid operators have a policy that announcing a blackout would attract crime to the area.

Exelon announces plan to close Mystic Station

In early April, Exelon said that it would close two large natural-gas fired units at Mystic Station, Massachusetts. In its report about possibilities for the winter of 2024-25, ISO-NE had included the loss of these two plants as one of its scenarios. The ISO-NE report concluded that Mystic’s possible closure would lead to 20 to 50 hours of load shedding (rolling blackouts) and hundreds of hours of grid operation under emergency protocols.

When Exelon made its closure announcement, ISO-NE realized that the danger of rolling blackouts was suddenly more immediate than 2024.  ISO-NE now hopes to grant “out of market cost recovery” (that is, subsidies) to persuade Exelon to keep the Mystic plants operating. If ISO-NE gets FERC permission for the subsidies, some of the threat of blackouts will retreat a few years into the future.

Winter scenarios and natural gas

The foremost challenge to grid reliability is the inability of power plants to get fuel in winter.  So ISO-NE  modeled various scenarios, such as winter-long outages at key energy facilities, and difficulty or ease of delivering Liquified Natural Gas (LNG) to existing plants.

Ominously, 19 of the 23 of the ISO-NE scenarios led to rolling blackouts. The worst scenarios, with the longest blackouts, included a long outage at a nuclear plant or a long-lasting failure of a gas pipeline compressor.

A major cause of these grid problems is that the New England grid is heavily dependent on natural gas. Power plants using natural gas supply about 50% of New England’s electricity on a year-round basis. Pipelines give priority to delivering gas for home heating over delivering gas to power plants. In the winter, some power plants cannot get enough gas to operate. Other fuels have to take up the slack. But coal and nuclear generators are retiring, and with them goes needed capacity. In general, the competing-for-natural-gas problem will get steadily worse over time.

All the ISO-NE scenarios assumed that no new oil, coal, or nuclear plants are built, some existing plants will close, and no new pipelines are constructed. Their scenarios included renewable buildouts, transmission line construction, increased delivery of LNG, plant outages and compressor outages.

Natural gas and LNG

The one “no-problem” scenario (no load shedding, no emergency procedures) is one where everything goes right. It assumed no major pipeline or power plant outages. It included a large renewable buildout plus greatly increased LNG delivery, despite difficult winter weather. This no-problem scenario also assumes a minimum number of retirements of coal, oil and nuclear plants.

This positive scenario is dependent on increased LNG deliveries from abroad. Thanks to the Jones Act, New England cannot obtain domestic LNG. There are no LNG carriers flying an American flag, and the Jones Act prevents foreign carriers from delivering American goods to American ports.

We can plan to import more electricity, but ISO-NE  notes that such imports are also problematic.  Canada has extreme winter weather (and curtails electricity exports) at the same time that New England has extreme weather and a stressed grid.

New England needs a diverse grid

To avoid blackouts, we need to diversify our energy supply beyond renewables and natural gas to have a grid that can reliably deliver power in all sorts of weather.  When we close nuclear and coal plants and don’t build gas pipelines, we increase our weather-vulnerable dependency on imported LNG.

We need to keep existing nuclear, hydro, coal and oil plants available to meet peak demands, even if it takes subsidies.  Coal is a problem fuel, but running a coal plant for a comparatively short time in bad weather is a better choice than rolling blackouts.

This can’t happen overnight. It has to be planned for. If we don’t diversify our electricity supply, we will have to get used to enduring rolling blackouts.
Meredith Angwin is a retired physical chemist and a member of the ISO-NE consumer advisory group. She headed the Ethan Allen Institute’s Energy Education Project and her latest book is Campaigning for Clean Air.


This op-ed has now appeared in several websites and news outlets. Links below to the post in other publications, some of which have comment streams.
This post at Ethan Allen Institute, The Caledonian Record, Vermont Business Magazine, VTDigger, True North Reports,  The CommonsNew England Diary   Providence JournalRhode Island and New England May Get Hit with Rolling Blackouts in the Future, including an interview with me, appeared in

Special note: My op-ed has now appeared in my local paper, the Valley News, on the front page of the Sunday "Perspectives" section.  It is always a thrill to see my work in my local paper!